The compound you've described is a complex organic molecule with a very specific structure. It's actually quite difficult to understand its importance without more context, especially since its full chemical name is very long and technical.
Here's what we can break down:
**Structure:**
* **1-[(2S,3R)-... -8-yl]-3-(4-methoxyphenyl)urea:** This part indicates the main structure is a urea derivative. Urea is a simple molecule with the formula (NH2)2CO. This derivative has a complex, chiral molecule attached to one of the nitrogen atoms.
* **(2S,3R)-...:** This indicates stereochemistry, meaning the arrangement of atoms in space. This part describes a specific 3D arrangement of the molecule's chiral centers.
* **cyclohexylmethyl(methyl)amino]methyl]...:** This indicates a specific functional group containing a cyclohexyl ring attached to a nitrogen.
* **5-[(2S)-1-hydroxypropan-2-yl]...:** This indicates a specific functional group with a hydroxypropyl side chain.
* **...3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl...:** This describes a complex cyclic structure with a benzoxazocin ring, a specific arrangement of double bonds, and other substitutions.
**Importance in Research:**
To understand its importance, we need more context. It's likely this compound is a:
* **Drug candidate:** The complex structure and specific functional groups suggest it could be designed to interact with specific biological targets.
* **Synthetic intermediate:** It might be used as a building block for other compounds, potentially more complex drugs.
* **Probing tool:** It could be used to study the behavior of specific biological targets or processes.
**To determine the specific importance, we would need additional information, such as:**
* **Its specific biological target:** What does it interact with?
* **Its pharmacological activity:** Does it show promising therapeutic effects?
* **Its synthesis and characterization:** How was it made and analyzed?
**It's crucial to remember that scientific research is often highly specialized. Without more context, it's difficult to explain the significance of this specific compound.**
If you have more information about the research context, I can provide a more accurate and helpful explanation.
ID Source | ID |
---|---|
PubMed CID | 44202354 |
CHEMBL ID | 1720520 |
CHEBI ID | 124267 |
Synonym |
---|
BRD-K36468214-001-01-2 |
CHEBI:124267 |
smr001397891 |
MLS002473730 |
HMS2192J18 |
CHEMBL1720520 |
1-[(2s,3r)-2-[[cyclohexylmethyl(methyl)amino]methyl]-5-[(2s)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2h-1,5-benzoxazocin-8-yl]-3-(4-methoxyphenyl)urea |
Q27214235 |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 22.3872 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 14.1254 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.3489 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 26.1011 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Smad3 | Homo sapiens (human) | Potency | 11.2202 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
flap endonuclease 1 | Homo sapiens (human) | Potency | 39.8107 | 0.1337 | 25.4129 | 89.1251 | AID588795 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 89.1251 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
geminin | Homo sapiens (human) | Potency | 7.4737 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |